Linear and Convex Optimization
Convexity and Optimization – Part II

Ingen vurdering ennå
ISBN: 978-87-403-1383-3
1 utgave
Sider : 166
- Pris: 129,00 kr
- Pris: €13,99
- Pris: £13,99
- Pris: ₹250
- Pris: $13,99
- Pris: 129,00 kr
- Pris: 129,00 kr
Last ned GRATIS med 4 enkle steg…

Lås opp ditt selskaps læringspotensial
Korporat eBibliotek
Utforsk våre Firmaløsninger for ansattes læring
Dette er en Premium-eBok
Bookboon Premium - Få tilgang til over 800 eBøker - uten annonser
Du kan få gratis tilgang til dette i én måned - og 800 andre bøker med Premium-abonnementet. Du kan også kjøpe boken nedenfor
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: €5,99 p/m
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: £4,99 p/m
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: ₹299 p/m
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: $3,99 p/m
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
- Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m


Lås opp ditt selskaps læringspotensial
Korporat eBibliotek
Utforsk våre Firmaløsninger for ansattes læring
Brukere som så dette, så også på
-
Non-Cooperative Games An Introduction to Game Theory – Part I
-
Discrete Dynamical Systems with an Introduction to Discrete Optimization Problems
-
Mathematical Modeling I - preliminary
-
Operations Research
-
Descent and Interior-point Methods Convexity and Optimization – Part III
-
Fundamental Engineering Optimization Methods
-
Cooperative Games An Introduction to Game Theory – Part II
-
Convexity Convexity and Optimization – Part I
Om boken
Beskrivelse
This book, the second in a series of three on Convexity and Optimization, presents classical mathematical results for linear and convex optimization with an emphasis on the important concept of duality. Equivalent ways of formulating an optimization problem are presented, the Lagrange function and the dual problem are introduced, and conditions for strong duality are given. The general results are then specialized to the linear case, i.e. to linear programming, and the simplex algorithm is described in detail.
Innhold
- Optimization
- Optimization problems
- Classification of optimization problems
- Equivalent problem formulations
- Some model examples
- The Lagrange function
- The Lagrange function and the dual problem
- John’s theorem
- Convex optimization
- Strong duality
- The Karush-Kuhn-Tucker theorem
- The Lagrange multipliers
- Linear programming
- Optimal solutions
- Duality
- The simplex algorithm
- Standard form
- Informal description of the simplex algorithm
- Basic solutions
- The simplex algorithm
- Bland’s anti cycling rule
- Phase 1 of the simplex algorithm
- Sensitivity analysis
- The dual simplex algorithm
- Complexity