Skip navigation

Bookboon.com Last ned gratis eBøker og lærebøker

Choose a category

Convexity

Convexity and Optimization – Part I

Convexity
Ingen vurdering ennå
ISBN: 978-87-403-1382-6
1 utgave
Sider : 216
  • Pris: 129,00 kr
  • Pris: €13,99
  • Pris: £13,99
  • Pris: ₹250
  • Pris: $13,99
  • Pris: 129,00 kr
  • Pris: 129,00 kr

Last ned GRATIS med 4 enkle steg…

Vi beklager, men for å laste ned våre bøker eller se våre videoer må du ha en nettleser som støtter JavaScript.
Kan vi friste med noen KOSTNADSFRIE e-bøker og relevante Bookboon-oppdateringer?
Etter å ha oppgitt e-postadressen blir en bekreftelsesmail sendt til din mailbox. Vennligst godkjenn den for å motta vår ukentlig eBok-oppdatering. Eventuell kontaktinformasjon som blir oppgitt, vil ikke bli oppgitt til noen tredjepart.
eLib
Lås opp ditt selskaps læringspotensial
Se demo

Korporat eBibliotek

Utforsk våre Firmaløsninger for ansattes læring

Dette er en Premium-eBok

Bookboon Premium - Få tilgang til over 800 eBøker - uten annonser

Du kan få gratis tilgang til dette i én måned - og 800 andre bøker med Premium-abonnementet. Du kan også kjøpe boken nedenfor

  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: €5,99 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: £4,99 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: ₹299 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: $3,99 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
eLib
Lås opp ditt selskaps læringspotensial
Klikk her!

Korporat eBibliotek

Utforsk våre Firmaløsninger for ansattes læring

Om boken

  1. Beskrivelse
  2. Innhold

Beskrivelse

Convexity plays an important role in many areas of Mathematics, and this book, the first in a series of three on Convexity and Optimization, studies this concept in detail.

The first half of the book is about convex sets. Convex hull, convex cones, separation by hyperplanes, extreme points, faces, and extreme rays are some of the important notions that are considered. Results for the dual cone are interpreted as solvability criteria for systems of linear inequalities. Closed convex sets in general and polyhedra in particular are characterized in terms of extreme points and extreme rays.

The second half is about convex functions. We study, among other things, convexity preserving operations, maxima and minima of convex functions, continuity and differentiability properties, subdifferentials, and conjugate functions.

The book requires knowledge of Linear Algebra and Calculus of Several Variables.

Innhold

  1. Preliminaries
  2. Convex sets
    1. Affine sets and affine maps
    2. Convex sets
    3. Convexity preserving operations
    4. Convex hull
    5. Topological properties
    6. Cones
    7. The recession cone
  3. Separation
    1. Separating hyperplanes
    2. The dual cone
    3. Solvability of systems of linear inequalities
  4. More on convex sets
    1. Extreme points and faces
    2. Structure theorems for convex sets
  5. Polyhedra
    1. Extreme points and extreme rays
    2. Polyhedral cones
    3. The internal structure of polyhedra
    4. Polyhedron preserving operations
    5. Separation
  6. Convex functions
    1. Basic definitions
    2. Operations that preserve convexity
    3. Maximum and minimum
    4. Some important inequalities
    5. Solvability of systems of convex inequalities
    6. Continuity
    7. The recessive subspace of convex functions
    8. Closed convex functions
    9. The support function
    10. The Minkowski functional
  7. Smooth convex functions
    1. Convex functions on R
    2. Differentiable convex functions
    3. Strong convexity
    4. Convex functions with Lipschitz continuous derivatives
  8. The subdifferential
    1. The subdifferential
    2. Closed convex functions
    3. The conjugate function
    4. The direction derivative
    5. Subdifferentiation rules
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.